A molecular mechanism of chaperone-client recognition

نویسندگان

  • Lichun He
  • Timothy Sharpe
  • Adam Mazur
  • Sebastian Hiller
چکیده

Molecular chaperones are essential in aiding client proteins to fold into their native structure and in maintaining cellular protein homeostasis. However, mechanistic aspects of chaperone function are still not well understood at the atomic level. We use nuclear magnetic resonance spectroscopy to elucidate the mechanism underlying client recognition by the adenosine triphosphate-independent chaperone Spy at the atomic level and derive a structural model for the chaperone-client complex. Spy interacts with its partially folded client Im7 by selective recognition of flexible, locally frustrated regions in a dynamic fashion. The interaction with Spy destabilizes a partially folded client but spatially compacts an unfolded client conformational ensemble. By increasing client backbone dynamics, the chaperone facilitates the search for the native structure. A comparison of the interaction of Im7 with two other chaperones suggests that the underlying principle of recognizing frustrated segments is of a fundamental nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of an ATP-independent protein disaggregase: I. structure of a membrane protein aggregate reveals a mechanism of recognition by its chaperone.

BACKGROUND A novel chaperone, cpSRP43, recognizes and disassembles the aggregates formed by its client proteins. RESULTS The client proteins of cpSRP43 form stable disc-shaped aggregates with the chaperone recognition motif displayed onthe surface. CONCLUSION The surface-exposed motif on the aggregate allows it to be recognized by its chaperone. SIGNIFICANCE Understanding the structure an...

متن کامل

Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex.

Hsp90 is an essential molecular chaperone required for the folding and activation of many hundreds of cellular "client" proteins. The ATP-dependent chaperone cycle involves significant conformational rearrangements of the Hsp90 dimer and interaction with a network of cochaperone proteins. Little is known about the mechanism of client protein binding or how cochaperone interactions modulate Hsp9...

متن کامل

DisagMech1 JBC2

Background: A novel chaperone, cpSRP43, recognizes and disassembles the aggregates formed by its client proteins. Results: The client proteins of cpSRP43 form stable disc-shaped aggregates with the chaperone recognition motif displayed on the surface. Conclusion: The surface-exposed motif on the aggregate allows it to be recognized by its chaperone. Significance: Understanding the structure and...

متن کامل

Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis

Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...

متن کامل

Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions

Molecular recognition is integral to biological function and frequently involves preferred binding of a molecule to one of several exchanging ligand conformations in solution. In such a process the bound structure can be selected from the ensemble of interconverting ligands a priori (conformational selection, CS) or may form once the ligand is bound (induced fit, IF). Here we focus on the ubiqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016